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BACKGROUND AND PURPOSE
Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion and intestinal motility. The ability to
modulate intestinal permeability in inflammation may be important in therapy aimed at maintaining epithelial barrier
integrity. The aim of the present study was to determine whether cannabinoids modulate the increased permeability
associated with inflammation in vitro.

EXPERIMENTAL APPROACH
Confluent Caco-2 cell monolayers were treated for 24 h with IFNg and TNFa (10 ng·mL-1). Monolayer permeability was
measured using transepithelial electrical resistance and flux measurements. Cannabinoids were applied either apically or
basolaterally after inflammation was established. Potential mechanisms of action were investigated using antagonists for CB1,
CB2, TRPV1, PPARg and PPARa. A role for the endocannabinoid system was established using inhibitors of the synthesis and
degradation of endocannabinoids.

KEY RESULTS
D9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an
effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the
presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these
studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability.
Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated,
the increased permeability associated with inflammation.

CONCLUSIONS AND IMPLICATIONS
These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in
permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal
permeability associated with inflammation.

LINKED ARTICLES
This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section
visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit
http://dx.doi.org/10.1111/bph.2011.163.issue-7

Abbreviations
AEA, arachidonyl-ethanolamide, anandamide; AM251, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-
4-methyl-1H-pyrazole-3-carboxamide; AM630, 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-
methoxyphenyl) methanone; Caco-2, carcinoma colon cell line; CB1, cannabinoid receptor 1; CB2, cannabinoid receptor
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JZL 184, 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; MGL, monoacylglycerol
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Introduction

The pathogenesis of many intestinal disorders involves inter-
actions between alterations in intestinal permeability and
luminal exogenous agents, such as bacteria, toxins and
foreign antigens, as well as secretory products of the mucosa
itself, such as cytokines and growth factors (Madara and
Pappenheimer, 1987; Hecht et al., 1992; Ma et al., 2004;
Poritz et al., 2004). It is widely believed that the intestinal
barrier becomes dysfunctional in certain disease states, poten-
tially exposing the organism to lethal risk by permitting toxic
material to enter the portal venous and lymphatic systems,
and thus threaten the organism as a whole (Morehouse et al.,
1986; Unno and Fink, 1998; Ammori et al., 1999). Inflamma-
tory bowel disease (IBD) is accompanied by impaired epithe-
lial barrier function in the small and large intestine (Gassler
et al., 2001; Bruewer et al., 2006; Amasheh et al., 2009). This
has two consequences; firstly contributing to diarrhoea by a
leak flux mechanism, and secondly, perpetuating inflamma-
tion through increased luminal antigen and macromolecular
uptake.

For many centuries, the plant Cannabis sativa has been
used to treat various disorders of the gastrointestinal tract,
such as vomiting, anorexia, abdominal pain, gastroenteritis,
diarrhoea, intestinal inflammation and diabetic gastroparesis
(Coutts and Izzo, 2004; Duncan et al., 2005; Sanger, 2007;
Izzo and Camilleri, 2008). The presence of a functional
endocannabinoid system has been identified in the gut. CB1

receptors are expressed in the gastrointestinal tract of many
species, including rats, guinea-pigs and humans (Croci et al.,
1998; Kulkarni-Narla and Brown, 2000; Coutts et al., 2002;
Casu et al., 2003). Immunohistochemical studies indicate
that the enteric nervous system is the main site of CB1 recep-
tor expression and could be the main site of action for can-
nabinoids in the gastrointestinal tract (Coutts et al., 2002). In
human colonic tissue, CB1 receptors are expressed in the
epithelium, smooth muscle and the submucosal myenteric
plexus (Wright et al., 2005). The CB2 receptor has been
detected in rat peritoneal mast cells (Facci et al., 1995) and
enteric neurons (Duncan et al., 2008). In human colonic
tissue, CB2 is expressed in plasma cells and the lamina propria
(Wright et al., 2005), and in the epithelium of colonic tissue
characteristic of IBD (Wright et al., 2005; Izzo, 2007).

Recent studies have confirmed that the endocannabinoid
system becomes activated during inflammatory conditions,
both in animal models and in tissue samples from patients
suffering from inflammatory disorders. In an experimental
model of colitis, D’Argenio et al. found that the levels of the
endogenously produced cannabinoids, anandamide (AEA),
but not 2-arachidonylglycerol (2-AG), were significantly
increased (D’Argenio et al., 2006). AEA levels are also
increased in colon biopsies from patients with ulcerative
colitis (D’Argenio et al., 2006), small bowel samples from

patients with diverticular disease (Guagnini et al., 2006) and
from individuals in the atrophic phase of coeliac disease
(D’Argenio et al., 2007). During croton oil induced inflamma-
tion in murine small bowel, the expression of CB1 receptors
and fatty acid amide hydrolase (FAAH), a membrane protein
that metabolises AEA, are enhanced, and CB1 activation
inhibits motility (Izzo et al., 2001). Colonic CB1 receptor
expression has also been shown to be up-regulated in a
murine colitis model, and genetic or pharmacological block-
age of CB1 receptors worsens epithelial damage (Massa et al.,
2004). However, pharmacological inhibition of the CB1 recep-
tor has also been shown to inhibit ulcer formation and
plasma TNF levels in an indomethacin-induced model of
small intestinal inflammation (Croci et al., 2003). CB2 recep-
tor expression is also increased in human intestinal epithe-
lium in IBD (Wright et al., 2005; 2008). The role of CB2

receptors in inflammation is supported by the inhibition of
TNFa-induced IL-8 release by CB2 receptor antagonists in
human colonic epithelial cells (Ihenetu et al., 2003). CB2

receptor agonists have also been shown to offset LPS-induced
inflammation in rats through COX-derived products
(Mathison et al., 2004).

The ability to modulate intestinal permeability during the
inflammatory process may be important in devising future
therapeutic strategies to restore a ‘leaky’ tight junction para-
cellular barrier. Given the beneficial effects of cannabinoids in
inflammatory conditions in the gut, and our recent findings
that cannabinoids are capable of modulating intestinal per-
meability altered with EDTA (Alhamoruni et al., 2010), the aim
of the present study was to determine whether cannabinoids
modulate increased permeability associated with inflamma-
tion. To do this, carcinoma colon cell line (Caco-2) monolayers
were used as an in vitro intestinal epithelial model system,
and inflammatory conditions were mimicked by the
co-application of the pro-inflammatory mediators IFNg and
TNFa. We found that endocannabinoids further worsen the
increased permeability associated with cytokine application to
Caco-2 cells, while phytocannabinoids or CB1 receptor antago-
nism speeded the recovery of permeability in inflammatory
conditions. Inhibition of endocannabinoid degradation wors-
ened the effects of inflammation on intestinal permeability,
and inhibition of endocannabinoid synthesis ameliorated the
increased permeability associated with inflammation. Our
data suggest that locally produced endocannabinoids, acting
via the CB1 receptor, play a role in mediating changes in
permeability associated with inflammation.

Methods

The nomenclature for drugs and for their molecular targets
conforms to BJP’s Guide to Receptors and Channels (Alexander
et al., 2011).
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Cell culture
Caco-2 cells (ECACC, Wiltshire, UK, passages 56–72) were
cultured in Minimum Essential Medium Eagle supplemented
with 10% fetal bovine serum, 1% L-glutamine and 1%
penicillin/streptomycin. Cells were kept at 37°C in 5% CO2

and 95% humidity. Cells were grown in 12-well plates and
seeded at 50 000 cells per insert on 12 mm diameter, 0.4 mm
pore polycarbonate membrane inserts. Cells were grown for a
minimum of 14 days and used for experimentation between
days 14 and 21, when each insert had a transepithelial elec-
trical resistance (TEER) value greater than 1000 W cm2.

TEER measurement
The TEER measurement was used to evaluate the paracellular
permeability of cell monolayers (Madara et al., 1988). The
TEER of the monolayer was determined using an EVOM™
voltohmmeter (World Precision Instruments, Sarasota, FL,
USA) according to the methods of Wells and colleagues (Wells
et al., 1998).

Inflammatory protocol
Initial TEER readings were made before the addition of
10 ng·mL-1 IFNg (basolateral compartment). After 8 h, TEER
was measured again, and 10 ng·mL-1 TNFa was added for
another 16 h. TEER was measured again after a total of 24 h
incubation with the cytokines, which caused an average
fall in TEER of 20–25%, representing increased epithelial
permeability.

Permeability studies
Intestinal permeability to fluorescein isothiocyanate (FITC)-
dextran molecular mass 4 kDa (FD4), a tracer for the paracel-
lular pathway, was evaluated by measuring the flux of FD4
across cell monolayers. Cannabinoids [cannabidiol (CBD,
1 mM), AM251 (100 nM) and methandamide, mAEA 100 Nm]
were applied apically either concomitant with the cytokines
(0 h) or following the inflammatory protocol (24 h), for a
further 6 h. Cell layers (30 h) were then washed with HBSS/
20 mM HEPES (pH 7.4) and left for 30 min at 37°C to equili-
brate. FD4 (3 mg·mL-1) was applied apically and 100 mL
aliquots were collected from the basolateral side of each insert
after 30 min and 1 h. FD4 levels in the medium were mea-
sured using a fluorescence microplate reader at an excitation
wavelength of 490 nm and emission wavelength of 520 nm
(VICTOR, Perkin Elmer, USA). FD4 flux was calculated as the
average fluorescence value of two samples taken from the
same well, and expressed as a percentage of the FD4 perme-
ability of vehicle control monolayers in the same experiment.

Cell viability (MTS) and membane integrity
(lactate dehydrogenase release) assays
To show that the effect of cytokine application was not due to
cellular damage and changes in transcellular permeability, we
performed MTS (Promega, Madison, WI, USA) and lactate
dehydrogenase (LDH) assays (Bio Vision, CA, USA), according
to the manufacturer’s instructions, on Caco-2 treated with
10 ng·mL-1 IFNg and 10 ng·mL-1 TNFa for up to 72 h.

Effects of cannabinoids on Caco-2 cell
monolayer integrity (apical application)
Fresh medium, with or without cannabinoids
[D9-tetrahydrocannabinol (THC), CBD, AEA or 2-AG (all

10 mM)], was applied apically to plates where inflammation
had been established (i.e. after 24 h). Vehicle (0.1% ethanol)
was applied to control wells. TEER values were measured
every 1 h for the next 8 h, and then again 48 and 72 h after
cannabinoid administration. Our initial experiments showed
that a single dose of THC or CBD (10 mM) ameliorated the fall
in TEER caused by cytokines, while a single dose of AEA or
2-AG (10 mM) worsened this (see Figure 1). Therefore, we pro-
ceeded to perform concentration–response curves to THC,
CBD, AEA and 2-AG by adding increasing concentrations of
each drug to inserts. TEER values were monitored at all time
points as described above.

In some experiments, 10 mM of either THC or CBD was
applied at the apical compartment at 0 h (i.e. at the same
time as the cytokines) or 48 h after cytokine application.
TEER values were measured as above.

Target sites of action of cannabinoids
The following antagonists were co-applied with cannabinoids
(24 h after inflammation was established); AM251 (CB1 recep-
tor antagonist), AM630 (CB2 receptor antagonist), cap-
sazepine (TRPV1 antagonist), GW9662 (PPARg antagonist),
GW6471 (PPARa antagonist) and O-1918 (proposed cannab-
inoid receptor antagonist). All antagonists were used at 1 mM
except AM251, which was used at 100 nM (see Alhamoruni
et al., 2010) and appropriate vehicles were applied to control
inserts. TEER values were measured as above.

In some experiments, 100 nM of either AM251 or AM630
was applied at the apical compartment at 0 h (i.e. at the same
time as the cytokines) or 24 h after cytokine application
(when increased permeability was induced). TEER values for
each group were monitored over time.

Effects of cannabinoids on Caco-2
cell monolayer permeability
(basolateral application)
Fresh medium, with or without cannabinoids (THC, CBD,
AEA or 2-AG, all 10 mM), was applied basolaterally to plates
where inflammation had been established.

Effects of enzyme inhibitors on increased
permeability induced by cytokines
To establish the role of the FAAH enzyme on the AEA effect
on intestinal permeability, AEA (10 mM) was applied to the
apical side of inserts in the absence or presence of an FAAH
inhibitor 24 h after inflammation was established (URB597,
1 mM). Similarly, 2-AG (10 mM) was applied to the apical side
of inserts either alone or together with a monoacylglycerol
lipase (MGL) inhibitor (JZL 184, 1 mM). In both experiments,
the vehicle [ethanol and dimethyl sulfoxide (DMSO)] was
applied to control wells. TEER values were measured hourly
for the next 8 h, and then again at 48, and 72 h after can-
nabinoid administration.

In some experiments, 1 mM of URB597 or JZL 184, alone
or together with CB1 antagonist AM251 (100 nM), were
applied at the apical compartment at the same time as the
cytokines.
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Orlistat (1 mM), a 2-AG synthesis inhibitor, alone or
together with CB1 antagonist (AM251, 100 nM) was applied
at the apical compartment at the same time as cytokine
application.

Chemicals and reagents
All chemicals were purchased from Sigma-Aldrich (Poole, UK)
unless otherwise stated. IFNg and TNFa were purchased from
Invitrogen (Paisley, UK), and further dilutions in BSA stored
at -80°C for IFNg and -20°C for TNFa. All cannabinoids and
antagonists were purchased from Tocris Bioscience (Bristol,
UK) except THC and capsazepine, which were obtained from
Sigma UK. CBD, THC, capsazepine, AEA and 2-AG were dis-
solved in ethanol to a stock concentration of 10 mM with
further dilutions made in distilled water. GW9662, AM251
and AM630 were dissolved in DMSO to 10 mM, with further
dilutions made in distilled water. URB597, JZL 184 and Orl-
istat were dissolved in DMSO to 10 mM, with further dilu-
tions made in fresh media.

Statistical analysis
In each protocol, values are expressed as mean � SEM. Area
under the curve (AUC) values were calculated using Graph-
Pad Prism 5 software using the trapezoidal method. Data were
compared, as appropriate, by Student’s t-test or by ANOVA

with statistical significance between manipulations and con-
trols determined by Dunnett’s post hoc test.

Results

Cytokines increased permeability without
affecting cell viability or membrane integrity
Combined application of IFNg and TNFa (10 ng·mL-1) in
Caco-2 cells caused a reversible decrease in TEER (i.e.
increased permeability) over the 72 h measurement period.
Application of IFNg and TNFa to Caco-2 cells did not affect
the Caco-2 cell mitochondrial activity at any point over the
72 h experimental period compared with the vehicle group,
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Figure 1
The effects of phytocannabinoids (THC and CBD, 10 mM, A) and endocannabinoids (AEA and 2-AG, 10 mM, C) applied apically on the fall in TEER
values caused by the inflammatory cytokines (IFNg and TNFa, 10 ng·mL-1). Integrated response over time (area under curve) to THC and CBD
(C) and AEA and 2-AG (D) on the fall in TEER values caused by the inflammatory cytokines. Data are given as means with error bars representing
SEM. (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, ANOVA).
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as indicated by the MTS assay (OD at 72 h; vehicle 0.54 �

0.03, cytokine application, 0.52 � 0.01, n = 4). The total LDH
release from Caco-2 cells treated with cytokines was also not
significantly different to vehicle at any point over the 72 h
experimental period (OD at 72 h; vehicle 0.22 � 0.01, cytok-
ine application, 0.11 � 0.01, n = 4).

Apical application of phytocannabinoids
recovers cytokine-induced
increased permeability
Twenty-four hours after exposure to IFNg and TNFa, apical
application of either THC or CBD (10 mM) accelerated the
recovery of TEER values (see Figure 1A), and the total
response over time (AUC) was significantly different to
vehicle controls for both THC and CBD (P < 0.01, Figure 1B).
Further experiments showed that the ability of THC and CBD
to speed the recovery of TEER values after 24 h cytokine
application was concentration-dependent (see Figure 2 and
Table 1). When a sigmoidal concentration–response curve
was plotted with the AUC data presented in Table 1, the
logEC50 of THC and CBD were -6.03 and -5.68, respectively.

Apical application of endocannabinoids
further increases permeability after
cytokine application
Twenty-four hours after exposure to IFNg and TNFa, apical
application of endocannabinoids (10 mM of either AEA or

2-AG) caused a further and sustained drop in TEER in addi-
tion to the effects of cytokines (P < 0.05, Figure 1C and D).
Further experiments showed that this effect was
concentration-dependent (see Figure 2 and Table 1). When a
sigmoidal concentration–response curve was plotted with the
AUC data presented in Table 1, the logEC50 of AEA and 2-AG
were -3.95 and -3.78, respectively.

The effects of both phytocannabinoids and
endocannabinoids are CB1 mediated
The effects of THC and CBD were only significantly inhibited
by the cannabinoid CB1 receptor antagonist, AM251. Simi-
larly, the effects of the endocannabinoids AEA and 2-AG were
also only sensitive to AM251 (Figure 3 and Table 2).

Basolateral application of cannabinoids and
permeability after cytokine application
When applied to the basolateral membrane after cytokine
application, neither THC, CBD, AEA or 2-AG had any signifi-
cant effect on TEER (data not shown).

Phytocannabinoids prevented increased
permeability associated with
cytokine application
When inserts were treated with cytokines (basolateral) and
THC or CBD (apical) at the same time (0 h), THC and CBD
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Figure 2
Concentration–response curves to THC (A), CBD (B), AEA (C) and 2-AG (D) applied apically on the fall in TEER caused by cytokine application.
Data are given as means with error bars representing SEM. (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, ANOVA).
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(10 mM) completely inhibited the fall in TEER caused by the
cytokines (see Figure 4A). However, when THC or CBD were
applied 48 h after cytokine application, they had no effect on
the response to these cytokines (Figure 4B).

CB1 antagonism reduces the increased
permeability associated with cytokines
To determine whether the effect of cytokines can be pre-
vented by cannabinoid receptor antagonism, AM251 or

AM630 (both 100 nM, apical application) were added at the
same time as cytokine application (0 h) or after cytokine-
induced increases in TEER were induced (24 h). When
applied at time 0, AM251 significantly reduced the fall in
TEER caused by cytokines. However, when AM251 was
applied after 24 h, there was no effect of this compound
(Figure 5A). AM630 did not affect TEER values when
co-applied with cytokines, or when applied after inflamma-
tion was induced (Figure 5B), indicating no role for CB2 recep-
tor activation.

Table 1
Area under the curve values (%·min-1) for the concentration–responses to cannabinoids on TEER

THC CBD AEA 2-AG

Vehicle 1062 � 96 1327 � 210 1330 � 162 1018 � 72

100 nM 1097 � 113 1192 � 92 1258 � 41 1059 � 45

300 nM 868 � 67 1134 � 81 1353 � 73 985 � 57

1 mM 726 � 168 843 � 40* 1663 � 132 1224 � 81

3 mM 519 � 130** 665 � 177** 1671 � 76 1265 � 86

10 mM 315 � 20*** 336 � 14*** 1763 � 84* 1622 � 103**

30 mM 226 � 12*** 263 � 49*** 2519 � 65*** 2694 � 129***

Data are given as means with error bars representing SEM. Significant difference between vehicle and drug responses, *P < 0.05, **P < 0.01,
***P < 0.001, ANOVA with Dunnett’s post hoc test.
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Figure 3
The effects of various receptor antagonists on the effects of THC (10 mM, A), CBD (10 mM, B), AEA (10 mM, C) and 2-AG (10 mM, D) applied
apically on the fall in TEER caused by cytokine application. Data are given as means with error bars representing SEM. (n = 3, *P < 0.05, **P < 0.01,
***P < 0.001, ANOVA).
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The effect of phytocannabinoids (THC and CBD, 10 mM) applied apically at time 0 h (A), or after 48 h (B) on the fall in TEER caused by cytokine
application. Data are given as means with error bars representing SEM. (n = 3, *P < 0.01, ***P < 0.001, ANOVA).

Table 2
Area under the curve values (%·min-1) for the effects of cannabinoids on TEER in the presence of various receptor antagonists

THC CBD AEA 2-AG

Vehicle 1442 � 334 1386 � 247 1232 � 47 1100 � 34

Cannabinoid (10 mM) 531 � 85** 555.5 � 62*** 1886 � 62** 1561 � 71**

& AM251 1152 � 157 1351 � 30 1112 � 17 1137 � 121

& AM630 513 � 50** 519 � 4*** 1787 � 77** 1627 � 61**

& GW9662 477 � 69*** 531 � 4*** 1834 � 121** 1591 � 28**

& GW6471 519 � 50** 586 � 5** 1772 � 163** 1591 � 57**

& Capsazepine 499 � 25** 579 � 55*** 1784 � 156** 1528 � 60**

& O-1918 491 � 39** 547 � 28*** 1749 � 71* 1538 � 134**

Data are presented as means with error bars representing SEM. Significant difference between vehicle and drug responses, *P < 0.05, **P <
0.01, ***P < 0.001, ANOVA with Dunnett’s post hoc test.
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FAAH and MGL inhibition worsened
endocannabinoids effects on increased
permeability after cytokine application
URB597 alone caused no significant change in the recovery of
TEER compared with the vehicle (see Figure 6A and B). As
previously shown, AEA alone caused a significant drop in
TEER in addition to the effects of cytokines compared with
vehicle. However, application of URB597 together with AEA
caused a significantly greater drop in TEER than AEA alone
(Bonferroni’s multiple comparison test, Figure 6A and B). JZL
184 alone also caused no significant change in the recovery of
TEER compared with vehicle. 2-AG alone caused a significant
decrease in TEER as compared with vehicle group, and appli-
cation of JZL 184 with 2-AG caused a significantly greater
drop in TEER than 2-AG alone (Figure 6C and D).

To test the hypothesis that locally produced AEA and
2-AG partly mediates the increase in permeability caused by
cytokines, and whether these effects, if any, are mediated by
CB1 receptors, URB597 or JZL 184 (1 mM each) were applied
apically at the same time as cytokine application either alone

or with AM251 (100 nM). When applied at the same time as
cytokines, URB597 alone caused a further drop in TEER (i.e.
increased permeability) than cytokine application alone, and
this effect was inhibited by AM251 (Figure 7A and B). Simi-
larly, JZL 184 application led to a decrease in TEER, and this
effect was also inhibited by AM251 (Figure 7C and D).

To further investigate the possible role of locally produced
2-AG on the TEER reduction caused by cytokines, Orlistat
(1 mM), a 2-AG synthesis inhibitor was applied either alone or
together with AM251 (100 nM). It was observed that Orlistat
inhibited the drop in TEER caused by cytokines as compared
with vehicle group (Figure 7E and F). This was not further
affected by AM251.

FD4 flux was increased by cytokines and
modulated by cannabinoids
To support our TEER data, we performed key experiments to
measure the functional outcome of junctional change, that
is, paracellular permeability, by using FITC-conjugated
dextran (FD4) as a tracer. Cytokine application [interferon
gamma and TNF alpha (IT)] induced an increase of 22 � 4%
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in permeability to FD4 when compared with basal flux
(Figure 8A). CBD both reversed (IT + CBD) and prevented
(CBD + IT) this increase, as previously observed in the TEER
experiments. As before, the CB1 antagonist AM251 (100 nM)
blocked the CBD effect on cytokine-induced FD4 flux.

In addition, reflecting the AEA effect on cytokine-induced
TEER changes, mAEA (100 nM) further enhanced the in-

creased permeability to FD4 to 35.2 � 3.1% (an enhancement
of approximately 12%), which was also blocked by AM251.

AM251 (100 nM) was able to both partially inhibit and
prevent the cytokine-induced increase in FD4 flux, whereas
the CB2 receptor antagonist/inverse agonist, AM630, had no
effect (see Figure 8B), again in support of the previous TEER
data.

Discussion

Cannabinoids have been used to treat various disorders of the
gastrointestinal tract, such as vomiting, anorexia, abdominal
pain, gastroenteritis, diarrhoea, intestinal inflammation and
diabetic gastroparesis (Coutts and Izzo, 2004 Duncan et al.,
2005; Sanger, 2007; Izzo and Camilleri, 2008). Many of these
digestive disorders are associated with acute or chronic
inflammatory processes, and with alterations in intestinal
permeability. Our data show that cannabinoids have the
ability to both positively and negatively modulate permeabil-
ity through the CB1 receptor. Specifically, endocannabinoids
seem to be involved in the increase in permeability associated
with the development of inflammation, while phytocannab-
inoids can inhibit or restore increased permeability after
cytokine application.

In our model, basolateral application of 10 ng·mL-1 IFNg
and TNFa led to increased permeability in confluent Caco-2
monolayers, as reflected by a fall in TEER of around 20%. In our
study, the effect of cytokines was reversible, as TEER values
normalized after washing. Furthermore, LDH levels in media
after Caco-2 monolayers were treated with IFNg and TNFa for
3 days were comparable to those within a non-treated control
group. Cell proliferation was also not negatively affected by
cytokine application in our study. This indicates that the effect
of cytokine application on TEER was not due to cellular
damage and changes in transcellular permeability.

Our first main finding was that during inflammatory con-
ditions, the phytocannabinoids THC and CBD both
enhanced TEER recovery over time in a concentration-
dependent fashion. Cannabinoids have previously been
shown to reverse increases in permeability in other models.
For example, in a co-culture of endothelial cells and astro-
cytes, CP55940 and ACEA, both synthetic CB1 receptor ago-
nists, inhibited HIV-1-induced or substance P-induced
decreases in epithelial permeability (Lu et al., 2008). Rajesh
et al. (2007) also found that CBD attenuates the effects of
high glucose-associated increased cellular permeability in
human coronary endothelial cells. Furthermore, CBD treat-
ment has been shown to significantly reduce vascular hyper-
permeability in the diabetic retina (El-Remessy et al., 2006),
improve type I diabetes-induced cardiac dysfunction and
inflammation (Rajesh et al., 2010a) and attenuates TNFa sig-
nalling, inflammation and kidney dysfunction in a nephr-
opathy model (Pan et al., 2009).

We found that the effects of THC and CBD in reversing
the increase in permeability were sensitive to antagonism of
the CB1 receptor, but not the CB2 receptor. We also examined
a number of other potential sites of action at which cannab-
inoids are known to act, such as TRPV1 (see Di Marzo and De
Petrocellis, 2010) and the PPAR nuclear receptors (see
O’Sullivan, 2007), but did not find any contribution from
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these target sites. Our TEER data were supported by FD4 flux
data, demonstrating that CBD reversed increase flux associ-
ated with cytokines, and that this was inhibited by a CB1

receptor antagonist. The effect of THC and CBD on perme-
ability is in agreement with our previous study showing
phytocannabinoid-mediated changes in intestinal epithelial
permeability and tight junction protein expression were
brought about through activation of the CB1 receptor
(Alhamoruni et al., 2010). It should be noted that received
wisdom is that CBD is a poor/ineffective agonist at CB1 recep-
tors (Pertwee, 2008). However, Capasso et al. (2008) and de
Filippis et al. (2008) have similarly both shown that the
effects of CBD in inhibiting hypermotility in mice were sen-
sitive to CB1 antagonism, which might suggest that CBD
agonizes CB1 in the gut. However, another explanation for
the effects of CBD in the present study could be that CBD is
antagonizing CB1-mediated increases in permeability medi-
ated by locally produced endocannabinoids.

Our data suggest that there may be a therapeutic role for
THC or CBD in reversing abnormally increased permeability
associated with intestinal inflammation. A prophylactic role
was also suggested by our finding that applying THC or CBD
at the same time as cytokines completely abolished their
deleterious effects on permeability. Similarly, CBD could
prevent the increased flux of FD4 if applied at the same time
as cytokines. However, if applied 48 h after inflammation was
established, the positive effects of phytocannabinoids were
no longer observed, suggesting there is a therapeutic window
for the use of these compounds in reversing increased perme-
ability. However, this may be different in vivo, as the inflam-
matory insult may not be reversible as was the case in our
current experiments.

Our second main finding was that the endocannabinoids
AEA and 2-AG further increased Caco-2 permeability in addi-
tion to the effects of the cytokines, and that this effect was
concentration-dependent and mediated by the CB1 receptor.
This is in agreement with our previous work showing that
endocannabinoid application to Caco-2 cells was associated
with increased permeability (Alhamoruni et al., 2010). In
another cell model, Wang and colleagues have also demon-
strated that mAEA (a non-hydrolysable analogue of AEA)
increased paracellular permeability in alveolar cells (Wang
et al., 2003). We similarly showed in the present study that
mAEA further increases the flux of FD4 in addition to the
effects of cytokines, and that this effect is mediated by the
CB1 receptor.

Several studies have demonstrated increased AEA levels in
biopsies from untreated ulcerative colitis patients (D’Argenio
et al., 2006), coeliac disease (D’Argenio et al., 2007) and diver-
ticular disease (Guagnini et al., 2006). 2-AG also has been
found to be elevated in samples from patients with active
coeliac disease, with direct correlations observed between
endocannabinoids levels and the most active disease mani-
festations (D’Argenio et al., 2007). It is therefore possible that
overproduction of endocannabinoids plays a role in
increased gut permeability in these conditions. We performed
a series of experiments examining the potential role of the
endocannabinoid system in changes in permeability associ-
ated with inflammation. In the first experiment, we showed
that a CB1 receptor antagonist (but not a CB2 receptor antago-
nist) was able to limit the fall in TEER associated with cytok-

ines, and that a CB1 receptor antagonist (but not a CB2

receptor antagonist) limited the increased FD4 flux associated
with inflammatory conditions. This suggests that CB1 activa-
tion at least partially underlies increased permeability, and we
have previously shown that both AEA and 2-AG change the
expression of certain tight junction proteins via CB1 activa-
tion (Alhamoruni et al., 2010). In an experimental model of
diabetic nephropathy in mice, CB1 receptors were found to be
overexpressed within the glomeruli, and i.p. injection of
AM251 for 14 weeks was found to ameliorate albuminuria by
a restoration of the glomeruli junction complex (Barutta
et al., 2010). Furthermore, in the small intestine, CB1 receptor
antagonism has been shown to inhibit ulcer formation and
plasma TNF levels in an indomethacin-induced model of
small intestinal inflammation (Croci et al., 2003). CB1 activa-
tion is increasingly being shown to be pro-inflammatory in
several conditions, including nephropathy (see Mukho-
padhyay et al., 2010) and in endothelial and cardiac dysfunc-
tion (Rajesh et al., 2010b), supporting our suggestion that
endocannabinoid-mediated activation of the CB1 receptor
may play a role in mediating the effects of inflammation in
our Caco-2 cell model.

In further experiments, we showed that inhibition of the
enzymes that degrade either AEA or 2-AG in combination
with AEA and 2-AG application caused a very large and irre-
versible increase in permeability (within our time frame), in
addition to the effects of cytokines. More importantly, we
also found that application of these enzyme inhibitors alone
at the same time as cytokine application worsened the effect
cytokines on cell permeability, and this could be antagonized
by a CB1 receptor antagonist. This suggests that endocannab-
inoids may be produced by intestinal epithelial cells during
inflammation, and that their activation of the CB1 receptor
contributes to tight junction disruption and thus increased
permeability. Interesting, the FAAH and MGL inhibitors only
worsened the fall in permeability when they were applied at
the same time as cytokines (Figure 7), and not when applied
after inflammation had been established (Figure 8). This sug-
gests that it is in the development of inflammation that
endocannabinoid production may play a role in modulating
permeability. It is of note that enhanced tissue inflammation
has been observed in FAAH knockout mice in models of
inflammation and tissue damage in the liver and cardiac
tissue (Siegmund et al., 2006; Mukhopadhyay et al., 2011),
again supporting our theory that under pathological condi-
tions, endocannabinoid activation of CB1-dependent mecha-
nisms may contribute to injury in inflammation.

Finally, we found that inhibiting 2-AG synthesis signifi-
cantly reduced the increased permeability associated with
cytokines, demonstrating a role for the local production of
2-AG during inflammation. Unfortunately, no commercially
available inhibitor of AEA synthesis exists, so we were unable
to test whether a similar reduction might be observed.
However, taken together, our data strongly suggest that local
release of endocannabinoids, acting via the CB1 receptor, and
potentially via changes in tight junction proteins (Alhamo-
runi et al., 2010) underlie the changes in intestinal epithelial
permeability associated with inflammation.

Finally, we did not find that basolateral application of
either phytocannabinoids or endocannabinoids influenced
the changes in permeability after cytokine application. These
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findings may reflect differential expression of target sites of
action for cannabinoids across epithelial cells in inflamma-
tory conditions, and indicate that it is the apical (luminal)
membrane that it is more important in the regulation of
permeability in these circumstances. In the light of our find-
ings regarding the potential role for endocannabinoid release
during inflammation causing changes in permeability, it also
suggests that it is endocannabinoid production at the luminal
membrane that may play a role.

In conclusion, our study demonstrates for the first time
that cannabinoids are capable of modulating intestinal per-
meability in an in vitro model of inflammation. In particular,
endocannabinoids caused further increases in Caco-2 cell per-
meability, whereas phytocannabinoids restored increased
permeability induced by cytokines. The effects of cytokines
on increased permeability were inhibited by a CB1 receptor
antagonist and a 2-AG synthesis inhibitor, and were
enhanced by inhibitors of the degradation of AEA or 2-AG,
suggesting that local production of endocannabinoids acti-
vating CB1 may play a role in the modulation of gut perme-
ability during inflammation. Our study also suggests that
cannabis-based medicines may possess therapeutic benefit in
inflammatory intestinal disorders associated with abnormal
intestinal permeability.
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